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Abstract. The network of Barabasi and Albert, a preferential growth model where a new node is linked to
the old ones with a probability proportional to their connectivity, is applied to Brazilian election results.
The application of the Sznajd rule, that only agreeing pairs of people can convince their neighbours, gives
a vote distribution in good agreement with reality

PACS. 05.50.+q Lattice theory and statistics (Ising, Potts, etc.) – 89.65.-s Social systems –
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1 Introduction

Nowadays, it has been a matter of increasing interest [1] to
apply the fundamentals of the theories of complex systems
in many different disciplines, not only in physical sciences,
but even in social sciences, from economy to education [2]
or sociology. The main point is that social systems, like
natural ones, are constituted of great number of individ-
uals, which – generally – have local interactions between
them. Sometimes, social networks behaviour can be deter-
mined also by the action of external actors, which might
be mimicked by external fields in our model.

Elections are processes where many individuals inter-
act between them. It is a dynamical convincing process,
where we have at the same time the interaction between
neighbours and external influence (political advertis-
ing, campaigns etc). In Brazil, in proportional elections
(deputies or city councillors) the voters vote directly for
the candidates and not for the parties. They can vote for
a party, but it is not frequent. Some elections occur with
a large number of voters: In some states or in the largest
cities one has a number of voters in the order of magni-
tudes of millions or tens of millions. So, these elections
are a social phenomenon which presents the basic char-
acteristics of complex systems. One of these features is
that they are scale-free phenomena. This feature has been
observed by Costa-Filho et al. [3], who showed that the
distribution of the number of votes obtained by different
candidates for the 1998 elections in Brazil follow a power
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law distribution, with exponent ' −1.0. The same result
can be obtained for the whole country or for other pro-
portional elections, which shows that this is a very robust
result.

Taking into account that elections are processes where
a vote is supposed to be obtained as a result of convincing
arguments, it can be compared with a physical process
of clustering. However, contrary to the results obtained
by Costa-Filho et al., usual models of formation of clus-
ters (as percolation, for instance [4]) may give exponents
'−2.0 (square lattice) for the numbers of clusters as a
function of the cluster size.

Recently, we have introduced [5] a model for propor-
tional elections. Our model is based on the Sznajd model
proposed to simulate the process of formation of opinion.
However, different from other models [6], where the influ-
ence flows inward from the border to the center (like in
the majority games, where the site in the middle takes the
state of the majority of neighbouring sites), in the Sznajd
model [7–10] one has an outward flow of influence. It thus
differs from e.g. bootstrap percolation [11] or other cellu-
lar automata (for a computational review see [12]) where
the site in the center behaves according to a rule deter-
mined by its neighbours. Nevertheless, the dynamics of the
Sznajd model is quite similar (except for isolated sites) to
that of spinodal decomposition of the Ising model [13] at
low temperatures, as was shown in [5]: Starting from a
random distribution, large domains form where nearly all
sites have the same state. Finally, one domain will cover
the whole lattice. Thus to get the desired results we will
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look at intermediate times when there are still many dif-
ferent domains or correlated sites in the system.

In the Sznajd model, small sets of people influence
the opinions of their nearest neighbours if and only if all
people within the original set agree. On a chain, this set
is a bond with two people at its ends [7,9]. On the square
lattice with [10] or without [8] disorder, it can be such a
bond or a plaquette of four neighbouring spins (people).
This plaquette rule is called rule Ia in [8] and the bond
rule, used in the present paper, is called rule IIa in [8].
Thus if all four plaquette members or two bond members
share the same opinion, they convince their neighbours of
this opinion; otherwise the neighbours remain unchanged.

However, as shown by Barabasi and Albert re-
cently [14], social relations must be represented by net-
works instead of lattices. Networks of interactions (www,
author’s collaboration in scientific papers, actor’s collabo-
rations in films) show the common feature of scale-free be-
haviour. In order to represent this main feature, Barabasi
and Albert introduced a model for evolving networks. Nu-
merous papers used this model for a variety of purposes,
e.g. [15]. Starting with few nodes (which may represent
actors, authors, web sites) connected to each other, more
and more nodes are added to the network, each node con-
necting to an already connected one, with the probability
to connect to a node being proportional to the number of
previous nodes which are already connected to it.

In Brazil the voting process is much more based on
the relation between candidate/voter than on the parties.
Thus, our idealized version of the voting process can omit
the role of the parties. Another aspect is that it was clear
for us that the candidates do not start with the same social
weight. This determines the result of the elections, since
candidates with more social visibility or better conditions
to campaign are more likely to be elected. So, we have to
introduce some differentiation between the candidates in
the beginning of the simulation.

In this paper, we performed simulations on a three-
dimensional version of the previous one-dimensional [7]
and two-dimensional [8] Sznajd model. We combine it
with a network model for elections based on the model
of Bernardes et al. [5]. Unlike this first version [5] and
its three-dimensional variant where a probability to con-
vince had to be introduced, equation (1) below, in order to
produce some differentiation between the candidates, with
the Barabasi network the same result is obtained from the
combination of the different number of neighbours of the
nodes without this probability.

In the next section we present the models we have
used, followed by the results. Both of these models use
networks connecting the voters; one network is a simple
cubic lattice, the other a Barabasi network. After that, we
conclude.

2 Models and results

We have simulated two models in the present work. The
first one is a 3d version of that simulated previously [5].
The second is a Barabasi network version.

2.1 Simple cubic lattice

In this work, we used a modified version of the Sznajd
model (rule IIa in [8]): A pair of neighbours in agreement
convinces its ten nearest neighbours to the same opinion.
A cubic lattice of size L × L × L represents the set
of voters. A number Ntot of candidates, Ntot � L3,
is fixed in the beginning of the simulation. The value
n = 1, 2, . . . , Ntot of a site S on the lattice will represent
that this voter prefers that candidate n. The model has
two different stages: First, we produce the initial condi-
tion and, after that, we perform the simulation of the
electoral campaign (only voters can influence other voters,
a la Sznajd). As in real elections, we do not wait for a
kind of equilibrium state, but count the votes at some
intermediate time. Basically what we are doing is the
analysis during the transient time. As in real elections, the
candidates have different initial chances of being voted for
(representing more money for electoral campaigns, more
initial visibility etc.). This is modelled by a probability Pc

of convincing, calculated from the label n of the candidate

Pc = (n/Ntot)2. (1)

It means that the higher is the label n of a candidate, the
higher is the probability of convincing a voter.

In the first stage, we started with all the sites with
value zero, meaning that there are no committed voters.
Then, we visit all the sites exactly once, in random or-
der. For each visit, we try to convince the voter to adopt
a candidate, chosen at random. A random number r is
generated and compared with Pc. If r ≤ Pc the candidate
is accepted by that voter. If the candidate convinces the
voter, this voter tries to convince the neighbouring sites.
Once again, we throw the dice and compare a new random
number with Pc. If successful, r ≤ Pc, the voter will try to
convince the neighbourhood as follows: We check all the
six neighbouring sites; for each that has the same value of
the candidate chosen before, all the ten neighbouring sites
of this bond of two sites will assume the same value (as
in the usual Sznajd prescription). If nobody has chosen
the same candidate, only the originally selected voter is
committed to this candidate.

In the second stage, a usual Sznajd process is per-
formed without using the complication from the probabil-
ity Pc. (We thus assume all voters to be equal and restrict
the probability Pc to describe the convincing power of the
candidates only.) We go to random sites on the lattice.
A neighbouring site is chosen at random and we check if
the two sites have the same value (they prefer the same
candidate). In that case, all the ten neighbours change to
vote in that candidate.

Figure 1 shows, just as in real life [3], deviations
from a simple power law for both very large numbers of
votes and very small numbers. In between, however, the
simulations are compatible with the hyperbolic law

N(v) ∝ 1/v (2)
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Fig. 1. Distribution N(v) of the number of candidates getting v votes each on the simple cubic lattice, after 50 and 100
iterations. Election of 200 candidates by 27 million voters.

Fig. 2. Distribution N(v) for half a million nodes on the Barabasi network, where each previously added node bonds to five
previously added nodes. Election of 1000 candidates (+). The number of votes in real elections (×: state of Minas Gerais in
Brazil 1998) is multiplied by ten for better comparison.

observed in reality for the number N of candidates having
v votes each. (Here and in Fig. 2 below the bin size for v
increases by a factor 2 for each consecutive bin.)

[In [5], for the square lattice and assumption (1), two
exponents are fitted onto the data: One for the distri-
bution after the first stage, and one for the distribution
during the second change. When assumption (1) is gener-
alized from ∝ n2 to ∝ nx, then the first exponent depends

strongly on x (which can be explained by a simple ana-
lytical relation between this exponent and x), while the
second exponent depends much less on x.]

2.2 Network version

In this model, we first create a network of interacting
nodes by using the basic Barabasi-Albert prescription. We
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fix an initial number of nodes, each one connected to the
others. In the present work, the minimum number of con-
nections of a node is m = 5. So, in the beginning of the
simulation we have 6 nodes, in order that each one can
be connected to the 5 others. After that, more and more
nodes are added to the network. A new node has a proba-
bility to be connected to a previous node proportional to
the number of nodes that are already connected to this
previous node. Thus the growth probability at any exist-
ing node is proportional to the number of nodes already
connected to it. We will no longer need assumption (1)
and have replaced this assumption and the regular lattice
by the Barabasi network without such an assumption.

After preparing the network, we start with the election
process, which is now different from that in the previous
three-dimensional model. The first step is the distribution
of candidates. Again, the state of a node, that means, the
value n of a node on the network, represents that this
voter has given the preference to that candidate n. Thou-
sand candidates are distributed at random, disregarding
the number of connections of a node, i.e. we pick a node
at random from the half million nodes to which we let the
network grow, and then a candidate at random. Now, the
campaign starts. At each time step we visit all the nodes.
For each node, we have the following process:

• If a node i has already selected preference for a candi-
date, we choose a connected node j at random. If node
i has no candidate (n = 0), we go to another randomly
selected node.
• If node j has the same candidate as node i, they try

to convince all the nodes connected with them. The
probability to convince others for each of the two nodes
is now inversely proportional to the time-independent
numbers of nodes connected with it, meaning that each
node convinces – on average – one other node at each
process.
• If node j has no candidate, node i tries to convince it

to accept its own candidate, with the same probability
as described above.
• If node j has a different candidate from node i, we skip

to another node i.

Again, as described above for the 3d version, we do
not wait for a equilibrium state. It is important to men-
tion that, different from a square lattice, where an equilib-
rium state is reached in a time proportional to the number
of sites, in the network it is reached rapidly, after about
102 iterations. In both cases, in final equilibrium all the
sites have the same state.

Figure 2 shows that again except for the smallest and
the largest numbers v of votes, the hyperbolic law (2) is
obeyed well at intermediate times t = 40.

3 Summary

Whether we simulate the election process on a square lat-
tice, a simple cubic lattice or a Barabasi network, we re-
cover the same hyperbolic law as found in real elections.

Our simulations on a Barabasi network have the advan-
tage that we no longer need assumption (1) for the purpose
of getting a realistic vote distribution with decay expo-
nent 1 in the center.

Our study has shown that the hyperbolic law observed
empirically is a rather robust consequence of our modi-
fid Sznajd model, since we found it first on the square
lattice [5] and now on both the cubic lattice and the
Barabasi network. Either we use a regular lattice and as-
sumption (1), or we use the Barabasi network without
assumption (1); the final results are similar. The fact that
the hyperbolic law is observable on the Barabasi network,
which is a more realistic model of social interactions than
the lattices, provides evidence that the Sznajd model may
well capture important aspects of the voting mechanism.
The advantage of using the Barabasi network instead of
regular lattices is not only that it is more realistic but also
that we can drop assumption (1) which is a kind of fine
tuning the system to criticality. Of course, the Barabasi
model, and the related assumptions are also rules (as we
have rules when constructing a lattice too) but the differ-
ence is similar to what we have for usual and self-organized
criticality: Assumption (1) puts in some exponent at the
beginning, through (n/Ntot)2, on which the final expo-
nent depends somewhat (see end of Sect. 2.1), while the
Barabasi growth process leads by itself to a power-law
distribution of the number of connections for a node, and
combined with the Sznajd model gives the desired vote
distribution with its intermediate power law.

Moreover, rule (1) was introduced ad hoc to explain
the election results, while the rules of [14] were stated
before, independent of the present application. We are not
aware of other voter models[16] explaining the hyperbolic
law found empirically in [3].
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Sznajd-Weron, Physica A 285, 1–238 (2000).

2. C. Bordogna, E. Albano, Phys. Rev. Lett. 87, 118701
(2001).

3. R.N. Costa-Filho, M.P. Almeida, J.S. Andrade Jr., J.E.
Moreira, Phys. Rev. E 60, 1067 (1999).

4. D. Stauffer, A. Aharony, Introduction to Percolation The-
ory (Taylor and Francis, London, 1994); A. Bunde, S.
Havlin, Fractals and Disordered Systems (Springer, Berlin-
Heidelberg 1996); M. Sahimi, Applications of Percolation
Theory (Taylor and Francis, London, 1994).



A.T. Bernardes et al.: Election results and the Sznajd model on Barabasi network 127

5. A.T. Bernardes, U.M.S. Costa, A.D. Araujo, D. Stauffer,
Int. J. Mod. Phys. C 12, 159 (2001).

6. J.A. Ho lyst, K. Kacperski, F. Schweitzer, Annual Reviews
of Computational Physics IX (World Scientific, Singapore
2001), p. 275; K. Kacperski, J.A. Ho lyst, Physica A 287,
631 (2000).

7. K. Sznajd-Weron, J. Sznajd, Int. J. Mod. Phys. C 11, 1157
(2000).

8. D. Stauffer, A.O. Sousa, S. Moss de Oliveira, Int. J. Mod.
Phys. C 11, 1239 (2000).

9. K. Sznajd-Weron, R. Weron, Int. J. Mod. Phys. C 13,
No. 1 (2002); R. Ochrombel, Int. J. Mod. Phys. C 12, 1091
(2001); I. Chang, Int. J. Mod. Phys. C 12, No. 10 (2001);
A.S. Elgazzar, Int. J. Mod. Phys. C 12, No. 10 (2001).

10. A.A. Moreira, J.S. Andrade Jr., D. Stauffer, Int. J. Mod.
Phys. C 12, 39 (2001).

11. J. Adler, Physica A 171, 453 (1991).
12. D. Stauffer, J. Phys. A 24, 909 (1991).
13. T.B. Liverpool, Physica A 224, 589 (1996).
14. A.L. Barabasi, R. Albert, Science 286, 509 (1999).
15. R. Albert, H. Jeong, A.L. Barabási, Nature 401, 130

(1999); S. Redner, Eur. Phys. J. B 4, 131 (1998);
A.L. Barabási et al. cond-mat/0104162; R. Albert, A.L.
Barabási, Rev. Mod. Phys. (in press), cond-mat/0106096.
For “small world” effect in social interactions see S.
Milgram, Psychology Today 1, 61 (1967).

16. For recent work see e.g. I. Dornic, H. Chate, J. Chave,
H. Hinrichsen, Phys. Rev. Lett. 87, 045701 (2001); R.
Hegselmann, talk at fifth conference on Simulating Soci-
ety, Kazimierz Dolny, Sept. 2001; G. Deffuant, D. Neau, F.
Amblard, G. Weisbuch, Adv. Complex Syst. 3, 87 (2000).


